•  / 10
  •   下载费用 0元

当前资源信息

0.0
 
(0人评价)
浏览:13次   评论: 0
精致管理上传于2013-11-21
关键字:

制程能力研究之广义信赖区间

内容简介:G01G01G01G01G01G01G01G01G02G03G04G05G06G07G08G01G03G09G01G0AG0BG0CG01G0DG0BG0EG06G0CG0FG0CG01G10G...

内容简介:G01G01G01G01G01G01G01G01G02G03G04G05G06G07G08G01G03G09G01G0AG0BG0CG01G0DG0BG0EG06G0CG0FG0CG01G10G06G0FG0AG0EG0AG04G0AG0CG01G03G09G01G10G06G11G04G0FG0AG05G0EG07G08G01G12G06G13G0EG06G0CG0CG05G0FG14G01G15G03G08G16G01G17G18G14G01G19G03G16G01G1AG14G01G1BG1BG16G01G17G17G1CG1AG1DG01G01G1AG1DG1DG17G02G01G01G01G01G01G01G01G01G01G01G03G03G04 G01G02G03G04G05G06G07G08G09G0AG0BG0CG0DG01 G04 G01G02G03 G01 G01 G01G02G03G04G05G06G07G04G08G01 G02G03G03G09G0AG0BG0CG0DG0EG0FG10G04G05G11G01 G04 G01G02G01 G04 G01G02G03G04G05G06G04 G05G06G06G07G08G09G08G0AG0BG0CG04G0DG0EG03G0FG04G0EG10G11G04G07G08G09G0AG0BG0CG0DG0EG0FG04 G01G12G06G0AG06G07G08G13G0CG14G06G0BG04G15G16G0AG17G0CG0BG06G0AG15G06G04G0CG0AG18G06G07G19G08G13G02G04G10 G11G12G13G14G15G04 G1AG1BG0AG0AG1CG08G0AG04G0DG10G1DG11G04G07G08G09G16G17G18G19G1AG1BG1CG1DG1EG04 G01G1EG07G16G15G06G1FG1FG04G15G08G1EG08G20G0CG13G0CG18G21G04G0CG0AG0BG06G22G02G04G10G0EG0FG1FG20 G21G22G13G23G24G25G26G27G0AG0BG0CG0DG0EG0FG28G29G2AG2BG2CG2DG09G2EG2FG0CG0DG0EG0FG04G01G23G08G21G06G1FG0CG08G0AG04G15G16G0AG17G0CG0BG06G0AG15G06G04G0CG0AG18G06G07G19G08G13G02G30G04 G04 G01G02G03G04G19G1AG1BG1CG1DG1EG13G0AG0BG0CG0DG0EG0FG13G2EG2FG0CG0DG0EG0FG04 G04 G02G03G01G03G04G01 G04 G19G1AG1BG1CG1DG1EG04G01G1EG07G16G15G06G1FG1FG04G15G08G1EG08G20G0CG13G0CG18G21G04G0CG0AG0BG06G22G02G04G31G16 G32G33G1FG19G1AG1BG1CG10G34G35G36G12G13G02G37G38G39G07G08G3AG3B G2CG2DG09G19G1AG1BG1CG1DG1EG13G3CG3DG04G24G25G07G08G0AG04G0DG26G11G04G07G08G09G04 G01 G01 G04 G1DG1EG13G27G3EG0BG29G27G04 G04 σσ G01G02 G01G02G03G02G04G03G02 G05 G06 = − = G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G01G03G02G04 G04 G27G3FG04 G1EG1FG20G04G40G04 G20G1FG20 G04G41G42G43G44G19G1AG09G45G46G47 G48G49G10G4AG4BG38G4CG04 G01G25G1EG1EG06G07G04G1FG1EG06G15G0CG17G0CG15G08G18G0CG16G0AG04G13G0CG1CG0CG18G02G04G4DG4AG4B G4EG4CG04 G01G13G16G28G06G07G04G1FG1EG06G15G0CG17G0CG15G08G18G0CG16G0AG04G13G0CG1CG0CG18G02G13σ G04G29G19G1AG09G45G46 G47G48G49G10G1EG4FG50G04 G01G1FG18G08G0AG0BG08G07G0BG04 G0BG06G19G0CG08G18G0CG16G0AG02G13G51G04 G01G02G03G04 G01G02G01G03G02G01G04 −= G04 G29G4AG4BG0EG0FG04 G01G1FG1EG06G15G0CG17G0CG15G08G18G0CG16G0AG04 G0CG0AG18G06G07G19G08G13G02G04G52G53G09G16G54G30G55G56G04 G01 G01 G04G1DG1EG23G57G58G59G5A G19G1AG09G45G46G47G48G49G10G5BG5CG04 G01G1CG06G08G0AG02G04 µ G04G5DG5EG1EG49G04 G01G18G08G07G12G06G18G04G19G08G13G25G06G02G04 G05G13G5FG04 G29G08G0AG06G04G0DG2AG11G04G5DG04 G2BG09G08G0AG0FG04G2BG09G06G0AG12G04G08G0AG0BG04 G2CG1EG0CG07G0CG0AG12G04 G0DG0EG11G04G41G42G07G08G04 G01G02 G01 G04G1DG1EG40G04 G01G03 G01 G1DG1EG13G27 G3EG0BG41G42G29G27G04 G04 σ µ σ µµ G01 G02G02 G01 G03G04G05G06G07G08G09 G01G02G03G04G03G05G04G03 G06G07 G08 −− = −− = G04G04G04G04G04G04G01G10G02G04 G04 G01G01G01 G01G02G03G01G01G02G02G04 G01 G02 G01G03G04 G05G06G05G07G06G05 G08 G01G02 −+ = − − = µσ G04G04G04G04G04G04G01G0EG02G04 G04 G27G3FG04 G01G02G03G04 G01G02G01G03G02G01G06 += G04G29G4AG4BG0EG0FG09G3F G60G13G07 G04G43G44G19G1AG09G45G46G47G48G49G13G55G56G04 G01G03 G01 G04G09G41 G61G62G43G63G64G65G66G67G5CG04G01G68G58G04 G2DG08G12G25G15G09G0CG04G0DG10G03G0FG04G10G10G11G02G04G10G11G04 G04 G2EG04G69G6AG6BG27G04G21G1EG15G09G08G0AG12G2FG20G1CG08G18G09G30G1FG15G25G30G06G0BG25G30G18G28G04 G6CG6DG49G13G6EG6FG04 G01G03 G01 G04G1DG1EG70G04 G01 G01 G04G5DG04 G01G02 G01 G04G1DG1EG71 G1BG72G73G10G74G75G08G19G1AG10G6CG6DG65G66G13G34G76G19G1AG1BG1C G1DG1EG04 G01 G01 G77 G01G02 G01 G04G40G04 G01G03 G01 G04G09G76G78G79G68G58G04 G29G16G18G14G04G08G0AG0BG04 G24G16G09G0AG1FG16G0AG04G0DG03G03G11G30G51G04G31G06G08G07G0AG0FG04G29G16G18G14G04G08G0AG0BG04G24G16G09G0AG1FG16G0AG04G0DG03G32G11G04G7A G7BG04 G01G03 G01 G04G5DG04 G01G02 G01 G04G1DG1EG10G7CG7DG13G07G08G7EG04 G01G03G02 G01 G04G1D G1EG13G27G3EG0BG29G27G04 G04 G02 G03G04 G02 G05 G06G06 G02 G03G04 G02 G05 G03G07G08G09G0AG0BG04 G01 G02G03 G01 G04G05G04G06G05G04 G07G08G09 G0A −+ −− = −+ −− = µσ µ µσ µµ G04G04G04G04G04G04G04G04G04G04 G04 G01G33G02G04 G04 G34G76G7FG80G19G1AG1BG1CG1DG1EG10G81G76G48G46G4DG75G06G79 G68G58G04 G29G16G18G14G04G08G0AG0BG04G24G16G09G0AG1FG16G0AG04G0DG03G34G11G04G40G04 G29G16G18G14G04G08G0AG0BG04G35G16G19G06G13G08G15G06G04 G0DG03G10G11G04G82G30G83G84G13G1AG1BG0AG0AG1CG08G0AG04G0DG10G1DG11G04G07G08G16G17G18G19G1AG1B G1CG1DG1EG04 G01G08G04 G25G0AG0CG17G0CG06G0BG04 G08G1EG1EG07G16G08G15G09G04 G18G16G04 G1EG07G16G15G06G1FG1FG04 G15G08G1EG08G20G0CG13G0CG18G21G04 G0CG0AG0BG06G22G02G13G85G29G04 G01G02G03 G02G03G01 G01 G04G1DG1EG13G27G3EG0BG29G27G04 G04 G01G01 G01G02G03 G04G04 G01G05G02 G01G02 G03G04G05 G02G04G06 G01 −+ −− = µσ µ G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G01G1DG02G04 G04 G27G3FG04 G04 G04G40G04 G21G04G29G86G56G87G82G56G04G34G04G09G88G5CG13G23 G24G89G8AG04 G01G02G03 G02G03G01 G01 G04G40G04 G01 G01 G77 G01G02 G01 G77 G01G03 G01 G77 G01G03G02 G01 G04G09 G76G78G41G42G29G27G04 G04 G01G01 G01G01 =G01G04G05G02G04G03 G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G01G36G02G04 G04 () G01G02G01 G01G01 =G04G02G06 G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G01G32G02G04 G04 G01G03G01 G01G01 =G01G06G02G04G03 G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G01G26G02G04 G04G03G10G01G01G01G01G01G01G01G01G01G01G01G01G01G02G03G04G05G06G07G08G01G03G09G01G0AG0BG0CG01G0DG0BG0EG06G0CG0FG0CG01G10G06G0FG0AG0EG0AG04G0AG0CG01G03G09G01G10G06G11G04G0FG0AG05G0EG07G08G01G12G06G13G0EG06G0CG0CG05G0FG14G01G15G03G08G16G01G17G18G14G01G19G03G16G01G1AG01G01G1AG1DG1DG17G02G01G01G01G01G01G01G01G01G01G01G01G01G01G04 G01G03G02G01 G01G01 =G01G06G02G06G03 G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G01G2AG02G04 G04 G6FG8BG13G1AG1BG0AG0AG1CG08G0AG04G0DG10G32G0FG04G10G26G11G04G8CG29G8DG8EG8FG75G06G38G13 G19G1AG1BG1CG1DG1EG90G86G56G04G34G13G28G91G04 G05G05G02 G06G05G04G08 −< G13 G51G5EG1EG49G04 G04 G04G92G93G56G04 G20G1FG20 G04G4DG04 G1EG1FG20 G04G09G0FG13G28G91G04 G06G07G07G08 >−G05G04G06 G13G29G94G95G04 G04 G04G49G10G96G12G97G5AG98G99G10G04 G04 G04G49G9AG9BG13G5FG4CG9CG04G03≤G04 G13G23G24G58G59G04G03=G04 G04G10G9D G9EG13G3EG0BG29G27G04 G04 G01G01 G01G02G03 G01G05G06G07G02G01G02 G01G09 G0AG02 G09G08G09G08 G01G01 −+ −− == µσ µ G04G04G04G04G04G04G04G04G04G01G03G34G02G04 G04 G51G04 G2CG1EG0CG07G0CG0AG12G04 G0DG10G34G11G04G28G39G07G08G9FG16G19G1AG1BG1CG1DG1EG04 G02G04G0FG34G01 G21G0D G01 G13G23G24G15GA0G6FG19G1AG1BG1CG1DG1EG4DG27GA1G19G1AG1B G1CG1DG1EG09G76G78G30G04 GA2G04 G02 G22G22 G0FG0F G01 ! G04G43G44G04 G06 G04GA3G19G1AG09G45G46G47G48 G49G13G24GA4G34GA5GA6G04 G01G0CG0AG0BG06G1EG06G0AG0BG06G0AG18G02G04G09G04 G01G02G03 G02 σµG07 G04G41 GA7G13G01G02G03G04G05G06G04 G05G06G06G07G08G09G08G0AG0BG0CG04G0DG0EG03G0FG04G0EG10G11G04G07G08G09G0A G0BG0CG0DG0EG0FG10G11G12G13G14G15G04 G1AG1BG0AG0AG1CG08G0AG04G0DG10G1DG11G04G07G08G09G16 G17G18G19G1AG1BG1CG1DG1EG04 G01G02G03 G02G03G01 G01 G04G10G0EG0FG1FG20G21G22G13G23 G24G25G26G27G0AG0BG0CG0DG0EG0FG28G29G2AG2BG2CG2DG09G2EG2FG0CG0D G0EG0FG04 G01G23G08G21G06G1FG0CG08G0AG04G15G16G0AG17G0CG0BG06G0AG15G06G04G0CG0AG18G06G07G19G08G13G02G30G04 G04 G04G03G01G05G06G07G08G09G0AG0BG0CG01 G04 GA8GA9G04 G05G06G06G07G08G09G08G0AG0BG0CG04G0DG0EG03G0FG04G0EG10G11G04G07G08G09G0AG0BG0CG0DG0E G0FG10G11G12G13GA2G04 G02G01 G02G03 G14G22G14G22G22 != G01G43G44G61GAAG09G01 G06G04 G32GA5GA6G79GABGACG09GADGAEGAFGB0G13G27G41GA7GB1GB2G04 G01G02G03 G02 σµG07 G13GB3GB4GB5G57GB6G68G5CG04 G01G02G03 G02 σµ G04GB7G68G5CG18G04 G01G07G06G1EG08G07G08G1CG06G18G06G07G0CG14G06G02G04G29G34GB8GB9G10G68G5CG04 θ G04G40G9FG16G32G3B GBAG68G5CG04G01G0AG25G0CG1FG08G0AG15G06G04G1EG08G07G08G1CG06G18G06G07G02G04 δG13G29G36GBBGBCGBDG13G3E G0BGBEGBF G02G04G0FG01G04G04 δθ=G23 G04G24G04 G02G01 G02G03 G14G24G14G24G24 != G04G29G04 G22 G01G09 GABGACG49G30G04 G3EG0BG04G10G30G03G04G27G04GA2G04 G03G06G04 G09G0AG0BG0CG0AG07G0D G04G29G04 G09G0AG0CG0AG0BG07 G06G06 G04G09G67 G5CG13GC0G04 G03G04 G09G0AG0BG0CG0AG0BG07G0D G04GC1GC2G27G04 G01G03G02G04 G03G04 G09G0AG0BG0CG0AG0BG07G0D G04G04G09G41GA7G40G57GB6G68G5CGC3G76GC4G04 G01G10G02G04 G02G04G01 G23G14G01G24G14G24G25G05 G04G05G06 = G04 G40G3BGBAG68G5CGC3G76G13GC5G04 G03G04 G09G0AG0BG0CG0AG0BG07G0D G04G04G85G29G0AG0BGC6GC7GB0G04 G01G12G06G0AG06G07G08G13G0CG14G06G0BG04 G1EG0CG19G16G18G08G13G04G37G25G08G0AG18G0CG18G21G02G30G04 G3EG0BG04G10G30G10G04G27G04GA2G04 Θ G04 G29G04 θ G04 G09G68G5CGC8G0FG04 G01G1EG08G07G08G1CG06G18G06G07G04G1FG1EG08G15G06G02G13GC9GCAG04 G03G04 G09G0AG0BG0CG0AG0BG07G0D G04G09GCBG01GC8G0FGCC GCDG7BG04 α−G01 G0D G04GC1GC2G04 G38G03G02G02G04G04G01G01 G01 −=∈ −G07 G0DG01G23G14G24G14G22G25G26 G13GC5 G3EG0BG04 G27 G04G09G04 G03G07G08G04G08G09G09 α− G04G0AG0BG0CG0DG0EG0FG29G27G04 G04 {} α θα − ∈Θ∈=−Θ G01 G27G02G03G01 G0DG05 G04G05G06G07 G04G04G04G04G04G04G04G04G04G04G04G04G01G03G03G02G04 G7FGCEG3EG0BG04G10G30G03G04G3FG09GCFGD0G04G01G03G02G04GD1GD2GD3GD4GC6GC7GB0 G09G04GD5G13G51GCFGD0G04G01G10G02G04G31GD6G25GD7GABGACG5AGABGACG49GD8G13 GD9G20GDAG08G09G0AG0BG0CG0DG0EG0FG4DG3BGBAG68G5CGC3G76G30G34G76 GD3GD4GC6GC7GB0G09G3EG0BG79G68G58G04 G23G08G0CG0AG04 G08G0AG0BG04 G39G0AG12G06G13G09G08G07G0BG18G04 G0DG03G11G13G27G83G86G0EG42G8DG0AG0BGC6GC7GB0G79G1BG40GABGDBG49G04 G01G04G34 G76G13GDCGD3GD4GC6GC7GB0GC5G98G1BG40GABGDBG49G34G76G13G6EG6FG55 G0AG0BGC6GC7GB0GD9GDDG5AG09G0AG0BG0CG0DG0EG0FG13G8DG20GDAG27GDE GDFGAEGE0G04G01G15G16G19G06G07G08G12G06G04G1EG07G16G20G08G20G0CG13G0CG18G21G02G04GD8G13G27GE1GE2G40GD3GD4G10 GE3GE0GE4GE5G04 G01G17G07G06G37G25G06G0AG18G0CG1FG18G02G04G23G98GE6GE7G81G99G30GE8G8EG38G13GD7 G0AG0BGC6GC7GB0G04 G03G04 G09G0AG0BG0CG0AG0BG07G0D G04GE9G40G04 G07 G04G4DG04 G09G0B G04G34G76G13 G51G40GABGDBG49G04 G24G04GC3G76GD8G13G0AG0BGC6GC7GB0G91G29GD3GD4G09GC6 GC7GB0G13GD9G20GDAG08G09G0AG0BG0CG0DG0EG0FG91G29GD3GD4G09G0CG0D G0EG0FG30G04 G04 G05G03G01G0DG0EG0FG10G11G12G13G14G15G16G01 G05G06G07G08G09G0AG01 G04 G29G36GBBGBCGBDG13G3EG0BGBEGBFG04 ∑ = = G01 G02 G02 G06G22G22 G01 G3A G13 G06G22G22G1F G01 G02 G02 G3AG02G01 G01 G02G02 ∑ = −= G13G24G04 G0C G04G40G04 G02 G0E G04G41G42G29G04 G22 G04 G40G04 G02 G02 G04 G09GABGACG49G13GC5G16G17G18G19G1AG1BG1CG1DG1EG04 G02G04G0FG01 G21G04G0D G01 G04G10G16G32G7BGEAG10G7DG1FG20G49G04G01G1EG16G0CG0AG18G04 G06G1FG18G0CG1CG08G18G06G02G04 G29G27G04 G04 G01G01 G01G02G03 G04G04 G01G05G02 G06 G01G07G02G08 G03G07G04G05 G02G04G06 G01 −+ −− = G04G04G04G04G04G04G04G04G04G04G04G04G01G03G10G02G04 G04 G51G34G76G6FG1FG20G36G12G10G81G76G48G46G13G79G68G58G04 G1AG1BG0AG0AG1CG08G0AG04G0DG10G1DG0FG04G10G36G11G04G40G04 G1AG1BG0AG0AG1CG08G0AG04G08G0AG0BG04G29G16G18G14G04G0DG10G2AG0FG04G0EG34G11G30G04 G01GEBGB5G8DG04 µ G04G40G04 G02 σ G04G5BG57GB6GD8G13GECGEDG16G17G18 G19G1AG1BG1CG1DG1EG09G0AG0BGEEGEFG04 G01G16G0AG06G3BG1FG0CG0BG06G0BG02G04G0CG0DG0EG0F G4EGF0G30G58G59G82G2DG27G04 G04 G02 G02 G01 G02G03G04         −−+ −−− = G01G02 G03 G04 G05G06 G03 G07G04 G08G02 G03 G04 G05G09G0A G06G09G0B G01 G04G04G04G04G04G04G04G04G01G03G0EG02G04 G04 G27G3FG04 G04 G01G06G05G02G04G03G09 G07 G08 G09G0A         − = σ µ G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G01G03G33G02G04 G04 G01 G02 G01 G01 G01 − = G01 G01G02 G03 χ σ G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G04G01G03G1DG02G04 G04

评论(共 0条)

您需要登录后才能提交评论。

(限250字)
关于我们 - 网站声明 - 网站地图 - 人才招聘 - 友情链接 - 客服客服 - 联系我们
copyright@ 2008-2013 培训师文库网站版权所有
蜀ICP备12014409号-1